Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy

نویسندگان

  • Sandra M Kallert
  • Stephanie Darbre
  • Weldy V Bonilla
  • Mario Kreutzfeldt
  • Nicolas Page
  • Philipp Müller
  • Matthias Kreuzaler
  • Min Lu
  • Stéphanie Favre
  • Florian Kreppel
  • Max Löhning
  • Sanjiv A Luther
  • Alfred Zippelius
  • Doron Merkler
  • Daniel D Pinschewer
چکیده

Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTLeff) responses. Conversely, the induction of protective tumour-specific CTLeff and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTLeff responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTLeff influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The alarmin interleukin-33 drives protective antiviral CD8⁺ T cell responses.

Pathogen-associated molecular patterns decisively influence antiviral immune responses, whereas the contribution of endogenous signals of tissue damage, also known as damage-associated molecular patterns or alarmins, remains ill defined. We show that interleukin-33 (IL-33), an alarmin released from necrotic cells, is necessary for potent CD8(+) T cell (CTL) responses to replicating, prototypic ...

متن کامل

Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment

Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignan...

متن کامل

The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant.

Alarmins are endogenous mediators that are elicited rapidly in response to danger signals, enhancing innate and adaptive immune responses by promoting the recruitment and maturation of antigen-presenting cells (APC). The nucleosome-binding protein HMGN1 is a potent alarmin that binds TLR4 and induces antigen-specific Th1 immune responses, but its contributions to antitumor immunity have not bee...

متن کامل

Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity.

Studies of interleukin (IL)-33 reveal a number of pleiotropic properties. Here, we report that IL-33 has immunoadjuvant effects in a human papilloma virus (HPV)-associated model for cancer immunotherapy where cell-mediated immunity is critical for protection. Two biologically active isoforms of IL-33 exist that are full-length or mature, but the ability of either isoform to function as a vaccin...

متن کامل

Microenvironment and Immunology The Alarmin HMGN1 Contributes to Antitumor Immunity and Is a Potent Immunoadjuvant

Alarmins are endogenous mediators that are elicited rapidly in response to danger signals, enhancing innate and adaptive immune responses by promoting the recruitment andmaturation of antigen-presenting cells (APC). The nucleosome-binding protein HMGN1 is a potent alarmin that binds TLR4 and induces antigen-specific Th1 immune responses, but its contributions to antitumor immunity have not been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017